Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermal Analysis of the Sn-Ag-Cu-In Solder Alloy

Identifieur interne : 003671 ( Main/Repository ); précédent : 003670; suivant : 003672

Thermal Analysis of the Sn-Ag-Cu-In Solder Alloy

Auteurs : RBID : Pascal:10-0227069

Descripteurs français

English descriptors

Abstract

The tin-based alloy Sn-1.5Ag-0.7Cu-9.5In (composition in wt.%) is a potential candidate for lead-free soldering at temperatures close to 200°C due to the significant amount of indium. Samples of Sn-1.5Ag-0.7Cu-9.5In were prepared by controlled melting of the pure elements, followed by quenching to room temperature. The samples were analyzed by scanning electron microscopy/ energy-dispersive x-ray spectroscopy (SEM/EDS) and electron backscatter diffraction. The solidified melt consisted of four different phases. Solidification behavior was monitored by heat-flux differential scanning calorimetry (DSC). The phase equilibrium has been further investigated by thermodynamic calculations. The observed phase compositions as well as DSC signals are reasonably explained using the calculation of phase diagrams (CALPHAD) approach.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0227069

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Thermal Analysis of the Sn-Ag-Cu-In Solder Alloy</title>
<author>
<name sortKey="Sopousek, Ji" uniqKey="Sopousek J">Ji Sopousek</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2</s1>
<s2>611 37 Brno</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>611 37 Brno</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Palcut, Mari N" uniqKey="Palcut M">Mari N Palcut</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology</s1>
<s2>91724 Trnava</s2>
<s3>SVK</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>91724 Trnava</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Division of Fuel Cells and Solid State Chemistry, Risø National Laboratory for Sustainable Energy, Technical University of Denmark</s1>
<s2>4000 Roskilde</s2>
<s3>DNK</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<wicri:noRegion>4000 Roskilde</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hodulova, Erika" uniqKey="Hodulova E">Erika Hodulova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Production Technologies, Faculty of Materials Science and Technology, Slovak University of Technology</s1>
<s2>91724 Trnava</s2>
<s3>SVK</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>91724 Trnava</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Janovec, Jozef" uniqKey="Janovec J">Jozef Janovec</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology</s1>
<s2>91724 Trnava</s2>
<s3>SVK</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Slovaquie</country>
<wicri:noRegion>91724 Trnava</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0227069</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0227069 INIST</idno>
<idno type="RBID">Pascal:10-0227069</idno>
<idno type="wicri:Area/Main/Corpus">004582</idno>
<idno type="wicri:Area/Main/Repository">003671</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0361-5235</idno>
<title level="j" type="abbreviated">J. electron. mater.</title>
<title level="j" type="main">Journal of electronic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Differential scanning calorimetry</term>
<term>Dispersive spectrometry</term>
<term>EBSD</term>
<term>Heat flow</term>
<term>Heat flux</term>
<term>Indium</term>
<term>Melting</term>
<term>Numerical simulation</term>
<term>Phase composition</term>
<term>Phase diagram</term>
<term>Phase equilibrium</term>
<term>Quenching</term>
<term>Scanning electron microscopy</term>
<term>Solder metal</term>
<term>Soldered joint</term>
<term>Soldering</term>
<term>Solidification</term>
<term>Thermal analysis</term>
<term>Thermodynamic model</term>
<term>Tin base alloys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Analyse thermique</term>
<term>Assemblage brasage tendre</term>
<term>Brasage tendre</term>
<term>Indium</term>
<term>Fusion</term>
<term>Trempe</term>
<term>Microscopie électronique balayage</term>
<term>Spectrométrie dispersive</term>
<term>Diffraction électron rétrodiffusé</term>
<term>Solidification</term>
<term>Flux chaleur</term>
<term>Flux thermique</term>
<term>Calorimétrie différentielle balayage</term>
<term>Equilibre phase</term>
<term>Métal fondu brasage tendre</term>
<term>Alliage base étain</term>
<term>Modèle thermodynamique</term>
<term>Composition phase</term>
<term>Diagramme phase</term>
<term>Simulation numérique</term>
<term>SnAgCu</term>
<term>In</term>
<term>8130F</term>
<term>8130B</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The tin-based alloy Sn-1.5Ag-0.7Cu-9.5In (composition in wt.%) is a potential candidate for lead-free soldering at temperatures close to 200°C due to the significant amount of indium. Samples of Sn-1.5Ag-0.7Cu-9.5In were prepared by controlled melting of the pure elements, followed by quenching to room temperature. The samples were analyzed by scanning electron microscopy/ energy-dispersive x-ray spectroscopy (SEM/EDS) and electron backscatter diffraction. The solidified melt consisted of four different phases. Solidification behavior was monitored by heat-flux differential scanning calorimetry (DSC). The phase equilibrium has been further investigated by thermodynamic calculations. The observed phase compositions as well as DSC signals are reasonably explained using the calculation of phase diagrams (CALPHAD) approach.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5235</s0>
</fA01>
<fA02 i1="01">
<s0>JECMA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. electron. mater.</s0>
</fA03>
<fA05>
<s2>39</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Thermal Analysis of the Sn-Ag-Cu-In Solder Alloy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SOPOUSEK (Jiří)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PALCUT (Marián)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HODULOVA (Erika)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JANOVEC (Jozef)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2</s1>
<s2>611 37 Brno</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology</s1>
<s2>91724 Trnava</s2>
<s3>SVK</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Production Technologies, Faculty of Materials Science and Technology, Slovak University of Technology</s1>
<s2>91724 Trnava</s2>
<s3>SVK</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Division of Fuel Cells and Solid State Chemistry, Risø National Laboratory for Sustainable Energy, Technical University of Denmark</s1>
<s2>4000 Roskilde</s2>
<s3>DNK</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>312-317</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15479</s2>
<s5>354000181028720070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>31 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0227069</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electronic materials</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The tin-based alloy Sn-1.5Ag-0.7Cu-9.5In (composition in wt.%) is a potential candidate for lead-free soldering at temperatures close to 200°C due to the significant amount of indium. Samples of Sn-1.5Ag-0.7Cu-9.5In were prepared by controlled melting of the pure elements, followed by quenching to room temperature. The samples were analyzed by scanning electron microscopy/ energy-dispersive x-ray spectroscopy (SEM/EDS) and electron backscatter diffraction. The solidified melt consisted of four different phases. Solidification behavior was monitored by heat-flux differential scanning calorimetry (DSC). The phase equilibrium has been further investigated by thermodynamic calculations. The observed phase compositions as well as DSC signals are reasonably explained using the calculation of phase diagrams (CALPHAD) approach.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D11D02</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A30F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A30B</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Analyse thermique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Thermal analysis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="GER">
<s0>Thermische Analyse</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Análisis térmico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Assemblage brasage tendre</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Soldered joint</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="GER">
<s0>Weichloetverbindung</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Junta soldada</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Brasage tendre</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Soldering</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="GER">
<s0>Weichloeten</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Soldeo blando</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="GER">
<s0>Indium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Fusion</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Melting</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="GER">
<s0>Schmelzen</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Fusión</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Trempe</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Quenching</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="GER">
<s0>Abschrecken</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Temple</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="GER">
<s0>Rasterelektronenmikroskopie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Spectrométrie dispersive</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Dispersive spectrometry</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Espectrometría dispersiva</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Diffraction électron rétrodiffusé</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>EBSD</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Diffractión electrón retrodifusa</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Solidification</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Solidification</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="GER">
<s0>Erstarren</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Solidificación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Flux chaleur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Heat flux</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Flux thermique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Heat flow</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="GER">
<s0>Waermefluss</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Flujo térmico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Calorimétrie différentielle balayage</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Differential scanning calorimetry</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="GER">
<s0>Differentialrasterkalorimetrie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Análisis calorimétrico barrido exploración</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Equilibre phase</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Phase equilibrium</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Equilibrio fase</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Métal fondu brasage tendre</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Solder metal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="GER">
<s0>Weichloetgut</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Metal fundido soldeo blando</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Alliage base étain</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Tin base alloys</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Modèle thermodynamique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Thermodynamic model</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Modelo termodinámico</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Composition phase</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Phase composition</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Composición fase</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Diagramme phase</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Phase diagram</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="GER">
<s0>Phasendiagramm</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Diagrama fase</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Simulation numérique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Numerical simulation</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Simulación numérica</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>SnAgCu</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>8130F</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>8130B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>151</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003671 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003671 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0227069
   |texte=   Thermal Analysis of the Sn-Ag-Cu-In Solder Alloy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024